Rapid and Brief Communication A reformative kernel Fisher discriminant analysis

نویسندگان

  • Yong Xu
  • Jing-yu Yang
  • Jian Yang
چکیده

A reformative kernel Fisher discriminant method is proposed, which is directly derived from the naive kernel Fisher discriminant analysis with superiority in classi1cation e2ciency. In the novel method only a part of training patterns, called “signi1cant nodes”, are necessary to be adopted in classifying one test pattern. A recursive algorithm for selecting “signi1cant nodes”, which is the key of the novel method, is presented in detail. The experiment on benchmarks shows that the novel method is e8ective and much e2cient in classifying. ? 2003 Pattern Recognition Society. Published by Elsevier Ltd. All rights reserved.

برای دانلود رایگان متن کامل این مقاله و بیش از 32 میلیون مقاله دیگر ابتدا ثبت نام کنید

ثبت نام

اگر عضو سایت هستید لطفا وارد حساب کاربری خود شوید

منابع مشابه

Rapid and Brief Communication An e$cient renovation on kernel Fisher discriminant analysis and face recognition experiments

A reformative kernel algorithm, which can deal with two-class problems as well as those with more than two classes, on Fisher discriminant analysis is proposed. In the novel algorithm the supposition that in feature space discriminant vector can be approximated by some linear combination of a part of training samples, called “signi6cant nodes”, is made. If the “signi6cant nodes” are found out, ...

متن کامل

A Subspace Learning Based on a Rank Symmetric Relation for Fuzzy Kernel Discriminant Analysis

Classification of nonlinear high-dimensional data is usually not amenable to standard pattern recognition techniques because of an underlying nonlinear small sample size conditions. To address the problem, a novel kernel fuzzy dual discriminant analysis learning based on a rank symmetric relation is developed in this paper. First, dual subspaces with rank symmetric relation on the discriminant ...

متن کامل

Rapid and Brief Communication A novel method for Fisher discriminant analysis

A novel model for Fisher discriminant analysis is developed in this paper. In the new model, maximal Fisher criterion values of discriminant vectors and minimal statistical correlation between feature components extracted by discriminant vectors are simultaneously required. Then the model is transformed into an extreme value problem, in the form of an evaluation function. Based on the evaluatio...

متن کامل

Rapid and Brief Communication Alternative linear discriminant classi$er

Fisher linear discriminant analysis (FLDA) $nds a set of optimal discriminating vectors by maximizing Fisher criterion, i.e., the ratio of the between scatter to the within scatter. One of its major disadvantages is that the number of its discriminating vectors capable to be found is bounded from above by C-1 for C-class problem. In this paper for binary-class problem, we propose alternative FL...

متن کامل

Adaptive Quasiconformal Kernel Fisher Discriminant Analysis via Weighted Maximum Margin Criterion

Kernel Fisher discriminant analysis (KFD) is an effective method to extract nonlinear discriminant features of input data using the kernel trick. However, conventional KFD algorithms endure the kernel selection problem as well as the singular problem. In order to overcome these limitations, a novel nonlinear feature extraction method called adaptive quasiconformal kernel Fisher discriminant ana...

متن کامل

ذخیره در منابع من


  با ذخیره ی این منبع در منابع من، دسترسی به آن را برای استفاده های بعدی آسان تر کنید

عنوان ژورنال:

دوره   شماره 

صفحات  -

تاریخ انتشار 2004